
ORIGINAL RESEARCH

Computational design of novel flavonoid analogues as potential
AChE inhibitors: analysis using group-based QSAR, molecular
docking and molecular dynamics simulations

Chakshu Vats • Jaspreet Kaur Dhanjal •

Sukriti Goyal • Navneeta Bharadvaja •

Abhinav Grover

Received: 28 March 2014 / Accepted: 11 August 2014 / Published online: 11 September 2014

� Springer Science+Business Media New York 2014

Abstract Acetyl cholinesterase (AChE) is an enzyme

associated with the loss of cholinergic neurones in Alz-

heimer’s disease. Acetylcholine is an important neuro-

transmitter found in the brain and the levels of which

decrease significantly in Alzheimer’s patients due to

increased expression of AChE. In this study, a novel

fragment-based QSAR model has been developed using

twenty-seven flavonoid-derived compounds exhibiting

inhibitory activity against AChE. This fragment-based

method gives the advantage of studying the effect of

individual fragments on the biological activity of the

compound by evaluating the descriptors. The compounds

were divided into training and test sets, where the test set

was used for cross-validation of the model. The QSAR

model exhibited good statistical values for the training set

(r2 = 0.8070, q2 = 0.7088, F-ratio = 31.3616) and test set

(pred_r2 = 0.8131). The regression equation obtained had

three descriptors describing effect of substitutions in terms

of quantitative values. Evaluation of the model implied that

electronegative substitution at R1 position lowers the

inhibitory activity, while the presence of hydroxyl group

improves the same. The presence of rings increased the

activity of the compounds. The model thus generated was

used to obtain six combinatorial libraries and predicts the

activity of these compounds. These compounds were

selected for docking and molecular dynamics simulation

studies and two leads were identified against AChE.

Keywords QSAR � Acetyl cholinesterase � Alzheimer’s

disease � Inhibitor � Docking � Molecular dynamics

simulations

Introduction

Alzheimer’s is one of the leading causes of dementia

affecting around 37 million people worldwide. It is also the

seventh biggest cause of deaths in United States [1]. The

estimated figures are expected to double every 20 years till

2040 due to rapidly ageing population around the globe.

Alzheimer’s is a progressive neurodegenerative disorder

characterized by loss of cognition and impaired intellectual

ability and functionality. The two important pathological

features that characterize the disease include formation of

senile plaques due to aggregation of the peptides of b-

amyloid which are derived from amyloid precursor protein

and neurofibrillary tangles composed of intra-neuronal

cluster of paired helical filaments [2]. Other features of the

disease include synaptic degeneration of acetylcholine

neurotransmitter, accumulation of lysosomes and glia and

mitochondria-mediated inflammation. However, none of

the above mentioned factors completely describe the clin-

ical features associated with the disorder. The actual

mechanism by which amyloid-beta plaques give rise to

Alzheimer’s is still unknown but it has been assumed that
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perturbance in the protein might be the initiating factor [3].

This hypothesis illustrates the triggering of neuron degen-

eration on accumulation of peptides of amyloid-beta. It has

been shown that the toxic aggregates of the protein disrupt

the calcium ion channel and initiate apoptosis [4].

Cholinergic deficit or the loss of cholinergic neurons

associated with AD leads to the decreased activity of

acetylcholine, a neurotransmitter responsible for memory

and function [5]. This led to the development of acetyl

cholinesterase inhibitors (AChEIs) as potent drugs for the

treatment of AD. AChEIs prevent the degradation of AChE

by inhibiting the hydrolysis of acetylcholine into choline

and acetyl group thereby improving the cognition ability

and memory loss [6]. Subsequently, AChEIs were intro-

duced as the preliminary treatment against the disorder.

AChEIs and memantine are being used for treatment of AD

since last 15 years. All the FDA-approved Alzheimer’s

drugs, donepezil, tacrine, galantamine, rivastigmine and

memantine, belong to these two categories only [1]. These

drugs, however, are mildly efficacious and provide only

symptomatic relief [7].

The paucity of these drugs and their adverse effects [8]

demand major breakthrough in the advancement of new

drugs preferably from natural sources. Various compounds

of plant origin have been identified to be effective against

AD [9]. Anisodamine from Anisodus tanguticus, a Chinese

herb, has been found to mimic the function of choline in

mouse models. Experiments also suggest the use of alka-

loids like Withanolide A as probable ligands for inhibition

of acetylcholinesterase [10]. Flavonoids, a group of natural

compounds found in a variety of fruits and vegetables have

also established a presence around the globe due to the

important pharmacological functions they possess. Litera-

ture provides evidence for its free radical scavenging

activity, neuroprotective role, acetyl cholinesterase inhibi-

tory activity and anti-amyloid-beta fibril activity [11, 12].

Thus, the identification of natural products with anti-AD

properties is gaining keen interest among the researchers

these days.

Traditional drug development method based on random

screening, chance discovery is a lengthy, expensive and

intellectually inefficient method. Computer-assisted drug

designing methods are fast and a viable option for

screening of potential drug-like candidates. These methods

are low cost and have high success rate. One such method

is known as QSAR or quantitative structure activity rela-

tionship. QSAR has been long used in scientific community

around the world for identification of structure–activity

relationships. Previously, QSAR experiments have been

performed for inhibitors targeting AChE enzyme. These

experiments, however, were based on a 3-D QSAR

involving CoMFA and CoMSIA studies [13–16]. With

high correlation values, in the range of 0.7–0.9, these

models were quite suitable for the prediction of activity of

newly synthesized inhibitors based on their 3-D confor-

mation. Although these models could predict the activity

of new compounds, they could not signify the importance

of the substitution of a particular group at a particular

site. In order to identify the contribution of a particular

group at a specific site, a novel fragment-based or group-

based QSAR method has been developed. This ligand-

based drug designing method is advantageous over 2-D

and 3-D QSAR. Since it is a fragment-based method,

descriptors can be calculated for different fragments

instead of a whole molecule. This method can be applied

to congeneric as well as non-congeneric inhibitors.

Another advantage of this method lies in the fact that the

knowledge of the effect of a particular fragment on a

substitution site can be used to generate a series of

compounds known as combinatorial library. This library

can thus be screened for the prediction of more potent

drug-like candidates. From the crystallographic structure

of AChE, two different ligand binding sites have been

identified, i.e. a catalytic active site (CAS) and peripheral

cationic site (PAS) [17]. Therefore, in order to completely

inhibit AChE, inhibition of both the sites has been

advocated. A 3-D QSAR study using flavonoid inhibitors

of AChE has been reported previously as well. However,

the model was generated using fewer compounds and the

correlation values were also low [18]. This study presents

an improved model, generated using G-QSAR method

and a well-trained system.

A flavonoid scaffold, developed by Li et al., possessing

terminal amine groups attached with carbon spacers has

been derived to fulfil the aim of designing dual binding site

inhibitors of AChEIs. Varied length carbon spacers were

used to enhance the dual binding inhibition by the com-

pound. This spacer resides in the mid-gorge and allows the

terminal amine groups to occupy CAS site via cation-p
interaction and aromatic stacking interactions allows

binding of flavonoids to PAS site [19]. In this study, a

congeneric series of flavonoid analogues designed and

evaluated by Li et al. were used to develop a fragment-

based G-QSAR model. These derivatives having basic side

chains of different lengths ranging from two to six alkanes

depicted metal chelation, AChE inhibition and anti-amy-

loid-beta aggregation properties [20]. A viable model was

obtained which predicted relationship between physio-

chemical properties of these compounds and their anti-AD

properties. The model was then used to recognize impor-

tant molecular sites and their properties to aid in the

development of novel molecule using the approach of

virtual combinatorial chemistry. In addition to building the

QSAR model, an attempt has been made to provide

detailed insights into the molecular mechanism of action of

this class of compounds.
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Materials and methods

Data set preparation

The structures of 27 flavonoid derivatives [20] were drawn

using Marvin sketch 5.12 (Supplementary data), a Chem-

Axom Ltd. product. These 2-dimensional structures were

converted into 3-dimensional form followed by optimiza-

tion using force field batch minimization, a Vlife engine

platform. The minimization was carried out to allow mol-

ecules to acquire a stable conformation. Merck molecular

force field and Gasteiger charges were the preferred

options for the optimization procedure. A common tem-

plate, representative of all the derivatives, was prepared

with the presence of a dummy atom (X) at the substitution

site. The reported inhibitory activity (IC50) value of these

inhibitors [20] was converted into logarithmic pIC50 value

to be used for G-QSAR model building. The study was

performed using Vlife MDS, version 4.3 provided by Vlife

Sciences, Pune, India on Intel� Xeon(R) CPU E31230 @

3.20 GHz with 8.00 GB RAM [21].

Calculation of descriptors

The common scaffold (Fig. 1) prepared above was used as a

template for the fragment-based QSAR model. The G-QSAR

module from the VLife MDS was used for the model

building. The optimized molecules were imported and their

activity values were manually inserted into the worksheet.

Activity data can be stored in a .qsr file with molecule names

and corresponding activities in each row in this file.

Calculation of 2-D descriptors is one of the most inev-

itable steps. Molecular descriptors are a numerical repre-

sentation of chemical information encoded by a molecule.

These descriptors are obtained by certain mathematical and

logical operations based on the equation and mathematical

formulas for different properties. Various physico-chemi-

cal descriptors were calculated for the groups present at the

substitution site in each of the molecule. The descriptor

names adopt a predefined nomenclature such that the name

clearly defines the substitution site and properties associ-

ated with it. For example, descriptors were named as R1-

Hosoya Index, where R1 is the substitution site and Hosoya

Index denotes the topological index or number of ways to

arrange the edges of bonds of a graph such that no two

bonds are placed together. All the columns with a constant

value of the molecular descriptor were removed to elimi-

nate the physiochemical properties which do not correlate

with the biological activity.

Data selection and building G-QSAR model

The dataset of the 27 derivatives was divided into test and

training sets such that there was a uniform distribution of

molecules with respect to activity values (pIC50). This

selection was done manually. 9 molecules (7d, 8b, 8d, 9b,

9c, 11c, 11d and 15d out of 27 molecules) were selected for

test set and the remaining 18 formed the training set. Uni-

column statistics were calculated for both test and training

sets. This is done to observe whether the test set is derived

within the max–min range of training set. The mean and

standard deviation data, for test and training sets give the

relative point density distribution along the mean. Partial

Least Square cross-validation method was selected to build

G-QSAR model. This method works by removing or add-

ing a predictor variable thereby improving the previous

model. The process continues until all the significant

variables were included in the model.

From variable selection and model building wizard,

simulated annealing algorithm was selected. Simulated

annealing was the algorithm of choice for variable

(descriptor) selection. The G-QSAR model was built based

upon the chosen descriptors. Simulating annealing is a

probabilistic method where a temperature variable is kept

for simulation of the heating process. This method derives

its name from the process of annealing of metals. The

temperature variable is initially set high and then decreased

as the algorithm progresses. At this stage, algorithm is

allowed to accept worst solutions than the current solution,

with greater frequency. This ensures that the algorithm, in

its initial stages, is not trapped in any local optimum. As

the temperature is reduced, the acceptance of solutions

becomes more stringent. This allows it to focus on the

space where optimum solution can likely be found. This

process of gradual cooling makes the algorithm effective

enough to obtain an optimal solution in case of large

number of local optimum solutions. The value of cross

correlation, maximum temperature, number of iterations

and variance cutoff were set as 0.5, 1000, 10 and 0.0,

respectively.Fig. 1 Common scaffold used for preparing flavonoid derivatives
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Validation of the developed G-QSAR model

Certain statistical parameters have to be considered in

order to establish a G-QSAR model. These include r2, q2,

pred_r2, F-test and standard error [22]. The r2, coefficient

of determination, is a statistical measure of how close the

regression line spans the real data points. An F-test is a

statistical method of comparing two different models, to

identify the best fit. For the model to be robust, the value of

these parameters should be above the threshold i.e.

r2 [ 0.5, q2 [ 0.5 and pred_r2 [ 0.5. High value of F-test

and low values pred_r2se, q2_se and r2_se are desirable for

a good model [23].

Cross-validation

The model was validated both internally and externally.

For internal validation, leave-one-out (q2) method was

adopted. In this method, molecules in the training set were

removed consecutively one by one and using the same

descriptors, the model was refit. This accounted for pre-

diction of the biological value of the removed molecule.

This method is based on the formula:

q2 ¼ 1�
P

yi�yð Þ
P

yi�ymeanð Þ

� �

;

where, yi is the actual and y is the predicted activity of the

ith molecule in the training set, and ymean represents the

average activity of all molecules of the training set. Model

generated from the training set was then used to perform

external validation using the test set compounds. The value

of pred_r2 was calculated using the following formula:

pred r2 ¼ 1�
P

yi�yð Þ
P

yi�ymeanð Þ

� �

;

where, yi is the actual and y is the predicted activity of the

ith molecule in the test set and ymean represents the average

activity of all molecules in the training set. Y randomisa-

tion tests were used for testing the robustness of the model

by comparing it to those derived from random data sets,

obtained by shuffling molecules to form new training and

test sets. Z score was calculated by the formula:

Z score ¼ ðh� lÞ
r

:

It is used for calculating the significance of models, by

comparing individual scores with the mean score of the

entire data set. In this case, h represents the q2 value cal-

culated for the actual data set; l is the average q2 value and

r denotes standard deviation calculated for various itera-

tions using models built by different data sets chosen at

random.

Generation of combinatorial library

Six different combinatorial libraries were created on the

basis of six different templates. The templates were dif-

fering in the length of the spacers, varying from 2 to 6. The

lead grow module of VLifeMDS was used to create the

libraries. Since there was only one substitution site in the

template, each library consisted of 233 molecules. The

prediction of activity, however, is done using the generic

prediction step in the G-QSAR module. The validated

G-QSAR model was used to predict the activity values of

the molecules in these six libraries. A highly variable

library was obtained by this method.

Preparation of protein and ligand for docking

The protein crystal structure of AChE was obtained from

Protein Data Bank [PDB ID: 4M0E]. The CAS site is

formed by the residues Trp84, Tyr130, Gly199, His441 and

His444 and one conserved residue Phe330, is also involved

in the recognition of ligands. The PAS site consists of

Tyr70, Asp72, Tyr121, Trp279 and Tyr334 amino acid

residues. The water molecules and non-bonded hetero-

atoms were removed using Accelyrs Viewerlite 5.0 [24]. In

order to perform docking, protein was prepared further

using Schrodinger’s protein preparation wizard [25]. In this

preparation process, hydrogens were added, bond lengths

were optimized, disulphide bonds were created, terminal

residues were capped and selenomethionine was converted

to methionine. The compounds obtained from the combi-

natorial library with higher predicted pIC50 value were also

prepared using LigPrep. Different chiral, stereochemical

and ionization variants of these compounds were generated

by this method.

In order to perform docking, a grid was created around

the active site of the protein molecule using Glide module

of Schrodinger [26–28]. All the small molecules were then

docked against the active cleft of the protein using extra

precision docking protocol of Glide. The top two com-

plexes, ranked on the basis of their binding energies, were

examined for hydrogen bonds and hydrophobic interactions

using Ligplot program [29].

Molecular dynamics simulations of the docked

complexes

In order to investigate the in vivo stability of the docked

complexes, molecular dynamic study was performed in the

presence of an explicit solvent on a fully hydrated model

using explicit triclinic boundary with harmonic restraints.

The simulations were performed using Desmond molecular

dynamics module of Schrodinger, with optimized potentials

for liquid simulations all-atom force field 2005 [30–32]. The

470 Struct Chem (2015) 26:467–476

123



complexes were prepared by addition of hydrogens followed

by optimization, removal of water molecules, capping of end

terminals and generation of disulphide bonds using the

protein preparation wizard. Prepared protein–ligand com-

plexes were then solvated with SPC water model in a triclinic

periodic boundary box. To avoid direct interaction of the

protein complex with its own periodic image, the distance

between the complex and the box wall was kept 10 Å.

Energy of the prepared systems was minimized to 5,000

steps using steepest descent method or until a gradient

threshold of 25 kcal/mol/Å was reached. It was followed by

low-memory Broyden-Fletcher-Goldfarb Shanno quasi-

Newtonian minimiser until a convergence threshold of

1 kcal/mol/Å was met. For system equilibration, the default

parameters in Desmond were applied. The equilibrated

systems were then used for simulations at a temperature of

300 K and a constant pressure of 1 atm, with a time step of

2 fs. For handling long-range electrostatic interactions,

smooth particle mesh Ewald method was used whereas

cutoff method was selected to define the short-range elec-

trostatic interactions. A cut-off of 9 Å radius was used.

Results and discussion

QSAR molecular modelling

The prerequisite for generating a QSAR model is a set of

congeneric series with adequate variability in the activity

(pIC50) values. The activity values have been derived exper-

imentally [20]. The structures of all the 27 ligands present in

the series are provided along with their activity values (Online

resource 1). A QSAR model in general is generated consid-

ering three important factors: steric, electrostatic and hydro-

phobic interactions. The descriptors for the three energies

were calculated at each lattice point around the grid after the

optimization of the ligands. 67 % of the total compounds i.e.

18 were selected as training set and rest 9 as test set. Uni-

column statistics (Table 1) were calculated and the two sets

were found to adhere to the rule which states that maximum of

the test set should be less than the maximum of training set,

and minimum of test set should be greater than training set.

Interpretation of G-QSAR model

The model obtained was statistically significant with value

of r2 = 0.80, q2 = 0.70 and pred_r2 = 0.81. The values of

other statistical parameters are also given in Table 2. The

predicted activity data were complying with the actual data

with small variations for both test and training sets, which

were demonstrated in radar plots (Fig. 2a, b). The data

points on the fitness plot lie near the regression line

Table 1 Uni-column statistics

Data Average Maximum Minimum Standard

deviation

Sum

Training 3.0134 3.88 1.59 0.62 54.24

Test 2.99 3.66 1.70 0.63 26.99

Fig. 2 Plots representing actual

and predicted activity values of

a training set, b test set

Table 2 Statistical parameters obtained in G-QSAR model

r2 q2 f-test r2_se q2_se pred_r2 pred_r2_se Y-randomization Y-randomization

Avg r2 Avg q2

0.8070 0.7088 31.36 0.2918 0.3584 0.8131 0.2764 0.1765 -0.447

Struct Chem (2015) 26:467–476 471
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indicating that the model is acceptable (Fig. 3a). Three

important descriptors were calculated for the compounds

namely, R1-SsOHE, R1-Hosoy Index and R1-Epsilon4

(Fig. 3b).

The model had good internal and external prediction.

The model can be given by the equation:

pIC50 ¼ �39:014 � R1� Epsilon4ð Þ
þ �0:0009 � R1� Hosoya Indexð Þ
þ 0:074 � R1� SsOHE� Indexð Þ þ 20:82

;

with n = 18, Degree of freedom = 15, Z Score

R2 = 7.95408, Z Score Q2 = 3.24697 and where n = no. of

compounds in training set. The equation obtained had three

physico-chemical descriptors which are explained below:

Hosoya Index

This descriptor signifies that the topological index or Z

index of a graph is the total number of matching in it plus 1

(‘‘plus 1’’ accounts for the number of matchings with 0

edges).

z ¼
X

k
pðG; kÞ;

where, p(G,k) = Number of ways in which K edges from

all bonds of a graph G may be chosen so that no two of

them are adjacent. The descriptor has negative contribution

of -55.30 indicating that less branching or smaller number

of edges in the molecule graph is more favourable.

SsOHE-index

This Electro-topological descriptor gives indices for num-

ber of –OH group connected with one single bond. It had a

positive value of 24.41, indicating that the presence of –OH

group increases the activity of the inhibitors.

Epsilon4

Epsilon4 is the electronegativity index of the saturated

carbon skeleton i.e. it indicates the electronegativity when

all bonds are saturated and all atoms have made carbon.

This descriptor has a negative contribution of -20.28 on

the inhibitory activity of the inhibitors. This indicates that

lower electronegativity is more favourable.

Y-randomization

In order to check the robustness of the model, Y-ran-

domization test was performed using Y-randomization

MLR tool of DTClab (http://dtclab.webs.com/software-

tools). The test was done using multiple linear regression,

which served the purpose of validation of the QSAR

model as well. The model values obtained by Y-ran-

domization were similar to the values obtained using PLS.

The values for r2 and q2 were found to be 0.813 and

0.727, respectively, which were in accordance with the

developed QSAR model. To check the effectiveness, 200

random models were generated by shuffling the activity

values and keeping the descriptors constant. For a model

to be robust, the averaged value of r2 and q2 obtained

after shuffling should be low and cRp2 should be high.

Our model fulfilled these criteria with the average r2 as

0.1765, average q2 as -0.4476 and cRp2 as 0.7310. This

result indicated that the QSAR model was not just a

chance prediction and hence is capable of predicting the

activity of new compounds.

Applicability domain analysis

Applicability domain (AD) is the physico-chemical,

structural or biological space on which the training set of

the model has been developed. It gives information about

the subspace of the chemical space in which the model can

give reliable prediction. Thus, model will be applicable

only to compounds falling within this domain. AD for our

model was calculated using an online tool available at

http://dtclab.webs.com/software-tools. AD calculation was

based on distance scores and was obtained using Euclidean

Fig. 3 a Fitness plot for test and training sets, b molecular descrip-

tors for the G-QSAR model
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distance norms. In this method, the descriptor values were

considered and normalized distance was calculated for all

the compounds comprising the training and the test sets.

The values for training set compounds lied between 0 and

1, where 0 represented the least diverse compound and 1

was for the most diverse compound. In case of test and

external set compounds, the value should be within 0 and 1

to consider them within the AD. All the compounds were

observed to be within this domain (Fig. 4).

Combinatorial library analysis

Six combinatorial libraries were generated based on the

above generated model and their activities were predicted.

The six different libraries were generated on different

templates with different spacer sequences varying from

n = 2 to n = 6. The substitution was made by different

alkanes, atoms, aromatic compounds and rings. Each

library consisted of 233 molecules. 40 % of the molecules

had predicted values above the highest value in the con-

generic series.

Docking and molecular dynamics studies

The top scoring compounds from the combinatorial library

with pIC50 values above 3.88 were selected. In order to

choose the top scoring compound, the extrapolation values

were also taken into account. The compounds with

extrapolation values above 1.5 were not included. This

filtering gave 35 top scoring compounds from all the 6

libraries. In order to identify the potential of these com-

pounds, molecular docking studies were performed using

Glide.

Extra precision docking was performed for all the 35

compounds with AChE protein. Results were analysed and

the two top scoring compounds were selected to study the

interaction pattern with the 3D structure of AChE. The AD

value for these two compounds was also calculated as

discussed above (Fig. 4). The first compound with activity

value of 5.48 contained a spacer sequence with n = 5 and

had substitution at R1 with cyclohexane (Fig. 6a). The

Fig. 4 Scatter plot representing applicability domain values for test

set and predicted compounds

Fig. 5 a Pre-MD hydrogen bonds of MPC, b pre-MD hydrophobic interactions of MPC, c post-MD hydrogen bonds of MPC, d post-MD

hydrophobic interactions of MPC
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IUPAC name of the compound is 8-methyl-2-phenyl-7-[(8-

phenyloctyl)oxy]-4H-chromen-4-one. For the sake of con-

venience, this compound would be further referred to as

MPC. The glide score or the binding energy for the com-

pound was found to be -9.82 kcal/mol. Another important

energy value, i.e. van der Waal’s energy was also calcu-

lated and was found to be -52 kcal/mol. These values

suggested strong binding between ligand and protein. Two

other important interactions namely hydrogen and hydro-

phobic interactions were studied using interaction networks

plotted using ligplot. MPC made one hydrogen bond with

Tyr 72 of AChE (Fig. 5a), one of the active site residues in

PAS site, and the bond length was 2.72 Å. Many other

strong hydrophobic bonds, with active site residues Gly

120, Gly 121, Leu 289, Tyr 337, Phe 338, Trp 286 and

several others (Fig. 5b) were also formed. MPC was found

deeply engraved in the active site of AChE.

The second compound (Fig. 6b) with n = 2 and

activity value of 5.48 had a substitution at R1 with

cyclohexane. The IUPAC name of the compound is

8-methyl-2-phenyl-7-(4-phenylbutoxy)-4H-chromen-4-one

(further referred to as MPC2). The glide score or binding

energy of the compound was calculated as -9.38 kcal/

mol and the van der Waal’s energy was observed to be

-42.91 kcal/mol. In order to explore further the interac-

tion network, ligplot was generated for the complex.

MPC2 was making one hydrogen bond with Phe 295

(Fig. 7a) and its bond length was found to be 3.15 Å.

Hydrophobic interactions with Trp 286, Leu 289, Val 294,

Fig. 6 Structures of the two selected compounds from the library

a MPC, b MPC2

Fig. 7 a Pre-MD hydrogen bonds of MPC2, b pre-MD hydrophobic interactions of MPC2, c post-MD hydrogen bonds of MPC2, d post-MD

hydrophobic interactions of MPC2
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Tyr 337 and Tyr 341 were also (Fig. 7b) observed. This

network of strong hydrogen and hydrophobic bonds was

stably holding the ligand in place. However, in vivo

conditions are different and behaviour of the ligands often

changes. Therefore, to further investigate the dynamic

behaviour of the ligand–protein complexes, molecular

dynamics simulation studies were performed.

Both the complexes were simulated in water box for

around 15 ns. A slightly different interaction pattern was

observed. After MD, MPC was making one strong hydrogen

bond with Tyr 124 (Fig. 5c) instead of Tyr 72 and bond

length was found to be 2.64 Å. MPC was now involved in

hydrophobic interactions with Trp 86, Gly 121, Trp 286, Ser

293, Tyr 337 and Tyr 341 (Fig. 5d). However, these chan-

ges did not affect the stability of the complex. The RMSD

plot (Fig. 8a) showed that the complex was stable

throughout with fluctuations in the range of 1–2.5 Å. Higher

stability was observed from 2 to 6 ns. However, standard

deviation was less than 0.8, which indicated that the com-

plex did not deviate much from its initiation conformation.

MPC2 also underwent significant changes and was now

making a hydrogen bond with Tyr 72 (Fig. 7c) with bond

length of 2.99 Å. Tyr 72 is an important residue of PAS site.

Hydrophobic bonds with Asp 74, Trp 86, Gly 121, Gly 122,

Trp 286, Glu 292 and Tyr 34 (Fig. 7d) were also formed.

The changes were significant but did not interfere with the

stability of the complex. RMSD of all frames in reference to

the first frame was plotted. The docked complex was found

to be quite stable with minor deviations (ranging between 1

and 2.5 Å) in the conformation of backbone of the protein

(Fig. 8b). Thus, we can strongly suggest these two com-

pounds to be good inhibitors of AChE.

Conclusion

In this study, a fragment-based QSAR model was devel-

oped based on 27 flavanoid molecules with known anti-

AChE activity. The activity data and structures were

obtained from the literature. The compounds were divided

into training and test sets, and model was generated using

PLS coupled with simulated annealing method. The sta-

tistical parameters obtained were namely r2, q2, F-test and

standard error for the training set and the pred_r2 for the

test set fulfilled the conditions for a model to be considered

predictive. The model equation contained three physico-

chemical descriptors R1-hosoyaindex, R1-SsOHE and R1-

epsilon4. The second descriptor was having a positive

contribution and the rest two displayed negative contribu-

tion in determining the activity of the compounds. Based

on the analysis of these descriptors, six combinatorial

libraries were created and their activities were predicted

using the developed G-QSAR model. The compounds with

an activity above 3.88 and in a valid extrapolation range

were selected for further studies. Docking studies were

performed for these compounds and good binding energies

were obtained. This suggested that the binding between the

compounds and the protein was favourable. Molecular

dynamics studies were performed for the top two com-

pounds obtained after docking to identify the stability of

the complex in in vivo conditions. The RMSD reported

depicts stable conformation of the protein–ligand complex.

Thus, the fragment-based QSAR model developed in this

study could be a useful tool in identification and develop-

ment of lead molecules by taking into account specifically

the properties of the substituents. The detailed analysis

carried out in this study provides a substantial basis for

MPC and MPC2 to be prospective lead molecules against

AChE.
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